PRODUCT
Needle roller bearing of bayesian posterior density function is derived
by:Waxing
2020-08-20
Needle roller bearing of bayesian posterior density function is derived: set ょ prior information for normal distribution NKn.
v吧,那幺啊先脸密度函数被甲(
E)
= -
V2nv1{
1 a exp2v;
一,只需5 + o;
I = 1, 2, m type.
‘a’雨数个boss先脸审度。
ッカ先验密度函数的平均值,w甲先脸密度函数的方法差异,i个轴承序号,米甲轴承套数。
Auspicious X, which can be obtained with ょ sakura sake and density function カ {
1NE -
2 na4 + x的)
| + ! 等-
2它们+ n)
n = ln = 1, 2, -
,N;
我= 1,2,-
,m (
8 -
11)
Type in the fXx (
n)
And 5)
甲x;
朝! 朕联合密度函数,等i和of甲n (
Gi, o?
)
Both numerical and variance, which o}
已知、ょ未知,A;
And S;
甲x;
Both numerical and in poor, ni カ prior density function on the average numerical, v2 カ prior density function of the variance, x {
n)
甲第i杨绛轴承语法上第n购量i个轴承序号,米甲釉承套数,n个数据序号,n个数据个数,k式(
8 -
12)
: N+1k=2n 2 v-
的年代;
- - - - - -
~,i = l 2米(
8 -
12)
Type, v カ first face of density function of analytic difference, s;
甲x柝准差,i个轴承序号,米甲轴承套数。
I remember for bearing the serial number, m for bearing a cycle.
i= 1,2,.
,m(
8 -
13)
σ= NA =σ2 + v”, mB =我= 1,xσ+ n;
V:, i=1,2,,mNc=s+Zx(
n)
+n,v2, n=_2,-
,N;
1 -
= 12, and mn = 1 type, s, as the standard deviation of X, the average of the ni as a prior density function, v?
As a prior density function of the variance, x (
n)
For the first n data sets of bearings, I for bearing the serial number, I m for bearing a cycle, n for data serial number, number n for the data.
By type (
8 -
11)
~ (
8 -
16)
, f (
x(
n)
And 5)
= k exp <
- - - - - -
2 (
452 -
25,B+C)>
我= 1,2》,m;
n = 1, 2,, n (
8 -
17)
Type of f (
x(
n)
And 5)
As the X;
With the factor;
The joint probability density function, zeta parameters to be estimated, x (
n)
For the first n data sets of bearings, I for bearing the serial number, I m for bearing a cycle, n for data serial number, number n for the data, if k = hexp (
- - - - - -
(
C -
B14)
(
8 -
18)
So f (
x,(
n)
And 5)
=kz expi=1,2,.
,m;
n = 1, 2,。
N (
8 -
19)
2 x -
1, (
5 -
)
Type of f (
x(
n)
, lead)
As the X;
And the joint probability density function of zeta, zeta parameters to be estimated, x;
(
n)
For the first n data sets of bearings, I for bearing the serial number, I m for bearing a cycle, n for data serial number, number n for the data.
X;
The marginal distribution of 1/2 m, (
x,(
n)
)
=f(
x;
(
n)
And 5)
d5;
= kzi = 1、2, m;
n = 1, 2,。
,。
N (
8 -
20)
(
2πA)
Type of f (
Xx(
n)
, lead)
As the X;
And the joint probability density function of zeta, zeta I parameters to be estimated, x: (
n)
For the first n data sets of bearings, I for bearing the serial number, I m for bearing properties;
N for the data serial number, n number for the data.
Custom message